0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Study on the Effect of Supplementary Cementitious Material on the Regeneration Performance of Waste Fresh Concrete

Auteur(s): ORCID
ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 13
Page(s): 687
DOI: 10.3390/buildings13030687
Abstrait:

In the preparation of ready-mixed concrete, it is inevitable to produce waste fresh concrete (WFC). An efficient, low-cost and environmentally friendly recycling scheme is the key to WFC recycling. In this work, we directly added some unhardened WFC to fresh concrete to prepare recycled fresh concrete (RFC); on this basis, fly ash (FA) and nano-silica (NS) were added as supplementary cementitious material (SCM) to obtain modified recycled fresh concrete (RFC-SF). Then, the mechanical properties, slump, freeze–thaw resistance, phase structure of the hydration products and hydration process in RFC were studied. The results show that the addition of FA and NS significantly improved the comprehensive performance of RFC. Compared with RFC, the compressive strength of RFC-SF with 15% FA and 3% NS increased by 15.2% and 50.3% at 7 d and 90 d, respectively, and the splitting tensile strength increased by 20.5% and 76.4%, respectively. The slump remained above 155 mm, and the mass loss rate decreased by 42.6% after freeze–thaw cycles. XRD and FTIR analysis showed that the addition of FA and NS accelerated the hydration reaction process of RFC-SF, reduced the content of calcium hydroxide (CH) and refined the grain size of CH. RFC-SF had a denser microstructure and a lower calcium-silicon ratio in SEM and EDS tests.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10712454
  • Publié(e) le:
    21.03.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine