0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Seepage Law of Injected Water in the Coal Seam to Prevent Rock Burst Based on Coal and Rock System Energy

Auteur(s):






Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2018
Page(s): 1-9
DOI: 10.1155/2018/8687108
Abstrait:

Rock burst is one of the typical dynamic disasters in coal mining. In order to reveal the mechanism of rock burst from the energy view point, the relationships between the maximum, minimum, and intermediate principal stresses and the concentration coefficients of the gravity stressk1,k2, andk3 are determined through the geostress measurement combined with engineering practice of coal mining. The coal and rock system model based on the tectonic stress is established. The relationship between energy and scale radius of the coal and rock system is determined to reveal the law of energy accumulation, release, and transfer in the coal and rock system. In view of the characteristics of the porous medium in the coal seam, the measures of water injection are put forward to relieve pressure in the coal seam, and the law of water seepage in the process of water injection in the coal seam is studied based on the seepage mechanics. The result shows that the trend of released energy of damaged coal has good consistency with the variation of permeability, and water injection can reduce the stress concentration and energy concentration of the rock burst system. The engineering practice of the rock burst prevention was taken in Yuejin Coal Mine. The energy characteristics of the coal and rock system in the working face are analyzed, and the measures of water injection and the corresponding parameters are determined.

Copyright: © 2018 Tianwei Lan et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10222563
  • Publié(e) le:
    23.11.2018
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine