0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Research on the Industrial Heritage Community Retrofitting Design Based on Space Network Model of Carbon

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 9, v. 13
Page(s): 2202
DOI: 10.3390/buildings13092202
Abstrait:

The low-carbon retrofitting of industrial heritage communities is an important issue for reducing urban carbon emissions. Previous research on the judgment of heritage elements and carbon emission factors of industrial heritage communities lacked the construction of elements within the space, and the value judgment of conservation and the determination of low-carbon factors lacked a systematic network analysis. Carbon spatial networks as a systematic approach can systematically harmonize the contradictions between “conservation–transformation–low carbon” while considering the spatial and temporal carbon emissions of nodes. This research uses hierarchical analysis to analyze the value of heritage elements and locate them in space, then combine the elements that affect carbon activities in space to form carbon space nodes integrated with heritage conservation elements, and analyze the links between nodes to form a carbon space network. Then, this research uses a carbon spatial network to dissect the structure of carbon emissions, calculate the carbon activity at nodes, and reflect it into a parameterized platform to guide designers. After that, this research selected 16 industrial heritage communities in the severe cold region for the carbon activity measurement of carbon spatial network node elements in the operation stage and conducted a correlation analysis to obtain a correlation matrix model of node elements and carbon activities. Within the constraints of heritage element protection, the results show that the volume ratio, green area ratio, and building density of the carbon spatial network model have the greatest influence on its carbon performance, followed by porosity and road density. Through case simulation verification, the floor area ratio of industrial heritage communities should be controlled between 2.1–2.5, the number of residential building floors should be 7–14, the road network density should be 4.16–4.50%, the green space ratio should be 20–35%, and the porosity should be 35–45%. Taking the three major power road communities in Harbin as an example, retrofit measures were decided by reference to relevant parameter control intervals, resulting in a 21.1% reduction in energy consumption, an approximate 32.7% reduction in carbon emissions, and a 7.3% reduction in the annual percentage of hours in extreme hot and cold environments.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10737206
  • Publié(e) le:
    02.09.2023
  • Modifié(e) le:
    14.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine