0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Regional Stability Analysis of Red Clay Slope Based on Different Failure Modes: A Case Study in Taizaifu Area, Fukuoka

Auteur(s):
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2019
Page(s): 1-11
DOI: 10.1155/2019/1269832
Abstrait:

Red clay slopes have different failure modes in different geological and climatic contexts. Underlying weak layers are frequently witnessed in integral failures because of the reverse consolidation characteristics. On the contrary, heavy rainfall often causes superficial sliding for a considerable infiltration through developed microfractures. Based on the Geographic Information System, regional stability of red clay slopes was evaluated with two failure modes, such as “integral sliding” and “planar sliding.” First, terrain and borehole data of the study area were used to construct the digital elevation model. Second, slope units were partitioned as research objects. For integral sliding, the slip surface was supposed to lie above the strata interface, and it was regarded as a lower part of an ellipsoid. After calculating safety factors of potential slip surfaces that were randomly generated by the Monte Carlo method, the minimum safety factor of the slope unit and the critical slip surface could be determined. For shallow landslides triggered by rainfall infiltration, the one-dimensional infiltration model and infinite slope model were used. Moreover, the difference between the sliding direction of each column and the main aspect of entire slope unit was considered in safety factor calculation. Finally, regional slope stability characterized by the safety factor would be available; thus, it would be beneficial to sliding prevention and disaster treatment in this region.

Copyright: © 2019 Fang Wei et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10376621
  • Publié(e) le:
    16.10.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine