0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

The Net Zero Emissions Decision Model of the Sustainable Path of Chinese Business Parks

Auteur(s):



ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 10, v. 13
Page(s): 2638
DOI: 10.3390/buildings13102638
Abstrait:

Business parks account for 30% of China’s total carbon emissions. Exploring emissions reduction approaches for business parks is crucial to achieve a net-zero emissions target, as well as for achieving a representative example for all types of emissions entities. Business parks mainly adopt two types of emissions reduction approaches: energy-saving renovations and purchasing carbon reduction products. However, there are limited studies focusing on the optimal combinations of the two approaches for reaching net-zero emissions and evaluating the cost effectiveness. To find a feasible and quantified way to build net-zero business park, a comprehensive path decision model is proposed. The problem is broken down into two parts: the optimal carbon reduction portfolio and the optimal electricity saving were researched. For the optimal product portfolio, the Markowitz theory is employed to balance the risk of carbon reduction products with the expected cost. In the part of optimal electricity saving, considering a ten-year life cycle, the total cost includes renovation investment, carbon reduction products cost, and cost saving of electricity consumption reduction. Based on the energy consumption, technical, and price data, the combination of energy-saving renovations and carbon reduction products is optimized. The model suggests a business park can save 24% of energy consumption through renovation investment and purchase CCER as 66% of the carbon reduction product portfolio. Taking only purchasing carbon reduction products as a benchmark to assess economic efficiency, implementing an optimized level of energy-saving renovation is found to save 16% of the comprehensive cost for the life cycle required to achieve zero carbon emissions. This model provides a new comprehensive optimization idea that will help future parks make decisions to achieve zero-carbon emission targets.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10744396
  • Publié(e) le:
    28.10.2023
  • Modifié(e) le:
    07.02.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine