0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Micro to Nanolevel Stabilization of Expansive Clay Using Agro-Wastes

Auteur(s):
ORCID

ORCID




Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2023
Page(s): 1-15
DOI: 10.1155/2023/2753641
Abstrait:

The circular economy encourages the production and consumption of sustainable embankment geomaterials and their blends utilizing recycled waste materials in roads, railway tracks, airfields, and underground structures. Geomaterials comprising high-plastic soft expansive clay pose excessive settlement during cyclic traffic/railway/airfield loading resulting in uneven geometry of overlying layers. This paper demonstrates multiobjective optimized improvement of expansive clay (C) geotechnical characteristics by cost-effective agro-wastes additives at microlevel (by 3% to 12% rice husk ash, i.e., RHA), nanolevel (by 0.6% to 1.5% rice husk derived green nano-SiO2, i.e., NS), and synergistic micro to nanolevel (NS-RHA). The swell potential, resilient modulus (MR), initial elastic modulus (Es), unconfined compressive strength (UCT), and California bearing ratio (CBR) of C and its blends were determined. The chemical characterization of C and its blends were conducted through Fourier transform infrared spectroscopy (FTIR) and optical microscopic tests. The outcome of this study depicted that the cost ratio for the optimized composite, i.e., (1.2% NS-9% RHA)/(9% RHA) is 1.22 whereas stiffness ratio MR (NS-RHA)/MR(RHA) and Es (NS-RHA)/Es(RHA) and strength ratio UCT(NS-RHA)/UCT(RHA) and CBR(NS-RHA)/CBR(RHA) were found to be 2.0, 1.64, 2.17, and 2.82, respectively. FTIR revealed the chemical compatibility between C, RHA, & NS from durability perspective. Cost-stiffness results of this study can be applied by geotechnical experts to economize the green stabilization of C by use of agro-waste for sustainable development.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1155/2023/2753641.
  • Informations
    sur cette fiche
  • Reference-ID
    10727333
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    30.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine