0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Feasibility Study of Steel Derailment Containment Provisions through Quasi-Static Experiments

Auteur(s): ORCID

ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 1, v. 14
Page(s): 171
DOI: 10.3390/buildings14010171
Abstrait:

Railway derailments present a safety hazard, carrying the potential for severe consequences for both human lives and the economy. Implementing derailment containment provisions (DCPs) near the track centerline is essential for mitigating risks in operating high-speed rail (HSR) while providing significant advantages for the large-scale upgrade of existing railway infrastructure. Therefore, this paper investigated the feasibility of a DCP system made of steel through quasi-static experiments, aiming to enhance safety in HSR operations. Initially, single anchor tests were conducted to assess its capacity to withstand applied loads, prevent the pullout of steel anchors, and avoid the local rotation of the steel frame. Then, full-scale steel DCP systems were manufactured and tested for quasi-static load at different locations, including the mid-anchor, the mid-span, and the end-anchor. The relationship between applied load and displacement, along with the initial stiffness of the DCP specimens, was discussed. The findings revealed that the single anchor can withstand an applied load of up to 197.9 kN. The DCP specimen maintained structural integrity at the 207 kN target load under all load scenarios, showing a maximum displacement of 8.93 mm in the case of applied load at mid-span. Furthermore, the initial stiffness of the DCP systems was 1.77 to 2.55 times greater than that of a single anchor, validating a force-bearing coordination mechanism among neighboring anchors and the substantial impact of the applied load positions on their stiffness.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10760336
  • Publié(e) le:
    23.03.2024
  • Modifié(e) le:
    25.04.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine