0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Experiment Investigation and Influence Evaluation of Permeability Ability Attenuation for Porous Asphalt Concrete under Repeated Clogging Conditions

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 11, v. 13
Page(s): 2759
DOI: 10.3390/buildings13112759
Abstrait:

One of the problems that limit the development of porous asphalt concrete (PAC) is that the pores become clogged, which leads to severe deterioration in its permeability performance. This paper focuses on PAC’s permeability characteristics under repeated cycles of clogging. First, sand (S), clay (C), and sand and clay mixtures (S + C) were used as clogging materials for repeated clogging tests. Then, the permeability coefficients in the initial state and after clogging were measured with an improved permeability device. Based upon porosity, maximum nominal particle size, and clogging materials, the paper analyzed the permeability regulation of PAC under repeated clogging conditions. In addition, we compared the restoration effects of vacuum cleaning, high-pressure cleaning, and surface cleaning with cleaning tests and proposed a response surface methodology prediction model. Finally, the particle size distribution of sensitive particles that cause different porosities in PAC clogging was explored. The results showed that the initial permeability coefficient and the permeability coefficient with PAC’s repeated clogging increased with the increase in the nominal maximum particle size and porosity. PAC clogged by sand has the greatest rate of reduction in the coefficient of permeability. In addition, we suggested that in PAC pavement maintenance work, water is first sprinkled to wet the road, then high-pressure cleaning used, and finally vacuum cleaning. The prediction model is reliable and the cleaning method has the most significant effect on the permeability coefficient. Further, the particle size distribution that caused PAC-13 and PAC-10 clogging ranged from 0.15 to 2.36 mm and 0.075 to 2.36 mm, respectively.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10754060
  • Publié(e) le:
    14.01.2024
  • Modifié(e) le:
    07.02.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine