0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Corroded RC Beams at Service Load before and after Patch Repair and Strengthening with NSM CFRP Strips

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 3, v. 9
Page(s): 67
DOI: 10.3390/buildings9030067
Abstrait:

This paper presents the experimental results of the structural behavior of four reinforced concrete beams with corroded steel reinforcement at service loads. One beam was non-corroded, one beam was corroded under an accelerated electrochemical technique to a small corrosion level (for one corrosion cycle), while two beams were corroded under the same conditions of an accelerated electrochemical technique and then subjected to vertical service loads that corresponded to 60% and 75% of the yield load of the non-corroded beam respectively for three corrosion cycles (with maximum mass loss around 25% for the first and 31% for the latter). Longitudinal cracks due to corrosion and flexural cracks due to loading were thoroughly recorded at the end of each cycle. The beam under the 75% service load had higher deflection increase for heavier corrosion. After the three successive serviceability load tests, the cracked concrete cover was removed and the steel rebars were treated. The cement-based repair mortar and two NSM FRP laminates were applied to both beams and were tested to failure. Despite the heavy corrosion, the patch repair and NSM strengthening enhanced the load-bearing capacity of the beams when compared with the non-corroded beam. All 10 tests are thoroughly discussed.

Copyright: © 2019 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10325004
  • Publié(e) le:
    22.07.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine