0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Investigation of Pore Structure and Water Imbibition Behavior of Weakly Cemented Silty Mudstone

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2019
Page(s): 1-13
DOI: 10.1155/2019/8360924
Abstrait:

Water-rock interaction of weakly cemented mudstone is intense due to its complex pore structure and mineral compositions. As primary channels for water imbibition, pore structures determine water migration. In this paper, pore properties of weakly cemented mudstone are measured by scanning electron microscopy (SEM), nitrogen adsorption/desorption (NAD), and mercury intrusion porosimetry (MIP), respectively. Water imbibition tests under free and lateral restraints are performed on self-developed water absorption instruments. The results show that skeleton aggregates, pore zone, and fissure zone constitute the basic structure of the rock, together with pore scales in nanoscale, submicron-scale, and micron-scale, respectively. The porosities of each zone are inferred with the values of 13.5%, 7.3%, and 2.3% by comparison of different methods. The main pore type is mesopore. Based on water imbibition tests, water rises along the large fissure and pore zones initially. Pores in the skeleton aggregates absorb water from pore and fissure zones subsequently. However, water imbibition is limited under lateral restraints. Owing to lateral restraints, the ascending height and rate of the sample with lateral restraints are lower than those of the sample with free confinements. The results suggest that lateral restraints can restrain water migration and water-rock interaction for weakly cemented mudstones, and measures can be taken to control swelling deformation by strengthening lateral restraints.

Copyright: © 2019 Shuai Wang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10315121
  • Publié(e) le:
    24.06.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine