

Multimode Damping Enhancement for Cable Vibration Control: Theoretical and Technological Developments with Applications

Limin Sun, Lin Chen

Department of Bridge Engineering, Tongji University, Shanghai, China

Yiqing Zou

Liuzhou OVM Machinary Co., Ltd., Liuzhou, China

Yingmei Xu

Jiangsu Sutong Bridge Co., Ltd., Nantong 214100, PR China

Qiang Wang

Jiangsu Provincial Transportation Engineering Construction Bureau, Nanjing 210004, China

Contact: lmsun@tongji.edu.cn

Abstract

Cables in cable-stayed bridges become super long, exceeding 600 m in the case of the Changtai Bridge which is under construction. Owing to their low inherent damping, cable are subjected various types of vibrations. A combination of aerodynamic treatments and supplemental mechanical dampers is required to suppressing such vibrations. However, providing sufficient damping to all the modes subjected to vibrations is still a challenge issue. This study presents fullscale measurement and field tests results of cable inherent damping and damper efficiency. Theoretical developments on multimode damping analysis of a cable with distributed dampers at different locations and cable networks formed by using cross-ties interconnecting neighboring cables are discussed. Practical measures, including by adding inerter, negative stiffness devices, and by installing both internal and external dampers for enhancing multimode damping are investigated.

Keywords: cable vibration control; multimode damping; negative stiffness device; vortex-induced high-mode vibration.

Figure 1. Graphical abstract