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1 Abstract 

Steel plate girders are used extensively in buildings and bridges. Given shear rarely governs, minimizing web 
thickness is desirable.  However, web slenderness can enable shear buckling and fatigue problems.  The 
traditional strategy is to use welded transverse stiffeners; yet transversely-stiffened girders are prone to 
fatigue cracks and difficult to fabricate at high slenderness ratios. Thus, AASHTO currently limits web 
slenderness to 150.  Alternatively, corrugated web girders overcome these deficiencies but require robotic 
welding for the web-to-flange weld. Corrugated webs are also limited to small web thicknesses (6mm or less) 
and girder depths (less than 1.5m) given web forming limits.  The authors propose an alternative web 
geometry, introducing low-frequency sinusoids (LFS) in the web along its length. The LFS web can be welded 
to the flanges using semi-automatic weld techniques currently employed by bridge fabricators. The reduced 
web curvature allows for a wider array of web forming techniques with much larger plate thicknesses.  In a 
finite element study, web geometric properties such as sinusoidal frequency and amplitude are varied. 
Results demonstrate a significant increase in the elastic shear buckling load and ultimate strength using a 
wavelength equal to the depth of the girder. The results of this study show promise for improved girder 
durability paired with material efficiency, demonstrating that a web product with constant amplitude and 
wavelength could work for various girder depths up to 3m and above. 
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2 Introduction 

Steel plate girders with slender webs are used 
extensively in building and bridge construction, 
due to their advantageous ratio of self-weight to 
span stiffness. However, web slenderness can give 
rise to shear buckling and fatigue problems that 
compromise a structure’s lifetime. Design loading 
can cause girder webs to buckle in-and-out of 
plane (i.e. web breathing), contributing to fatigue 
failure [1]. The goal of this paper is to enhance the 
shear buckling performance and longevity of  

slender plates by introducing low-frequency 
sinusoids (LFS) into the web plate geometry.  

Slender plate girder design is often governed by 
web shear buckling, occurring at the elastic shear 
buckling load Vcr [2]. To resist web shear buckling, 
vertical stiffeners are often welded onto web 
plates at regular intervals. The space between 
stiffeners is equal to “a” and defines the “panel.” 
Stiffeners increase a web plate’s Vcr by restraining 
out-of-plane displacement and reducing web panel 
aspect ratios to a/D, where D equals the web 
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